منابع مشابه
Unfaithful complex hyperbolic triangle groups I: Involutions
A complex hyperbolic triangle group is the group of complex hyperbolic isometries generated by complex involutions fixing three complex lines in complex hyperbolic space. Such a group is called equilateral if there is an isometry of order three that cyclically permutes the three complex lines. We consider equilateral triangle groups for which the product of each pair of involutions and the prod...
متن کاملOrientation Reversing Involutions on Hyperbolic Tori and Spheres
This article studies the relationship between simple closed geodesics and orientation reversing involutions on one-holed hyperbolic tori. 1. Simple closed geodesics on the one holed torus We consider topological surfaces of signature (g, n) (where g is the underlying genus and n is the number of simple boundary curves) with negative Euler characteristic and endowed with a hyperbolic metric such...
متن کاملHyperbolic Monodromy Groups for the Hypergeometric Equation and Cartan Involutions
We give a criterion which ensures that a group generated by Cartan involutions in the automorph group of a rational quadratic form of signature (n−1, 1) is “thin”, namely it is of infinite index in the latter. It is based on a graph defined on the integral Cartan root vectors, as well as Vinberg’s theory of hyperbolic reflection groups. The criterion is shown to be robust for showing that many ...
متن کاملRandom Walks on Weakly Hyperbolic Groups
Let G be a countable group which acts by isometries on a separable, but not necessarily proper, Gromov hyperbolic space X. We say the action of G is weakly hyperbolic if G contains two independent hyperbolic isometries. We show that a random walk on such G converges to the Gromov boundary almost surely. We apply the convergence result to show linear progress and linear growth of translation len...
متن کاملAsymptotic Approximation of Hyperbolic Weakly Nonlinear Systems
An averaging method for getting uniformly valid asymptotic approximations of the solution of hyperbolic systems of equations is presented. The averaged system of equations disintegrates into independent equations for non-resonance systems. We consider the resonance conditions for some classes of solutions. The averaged system can be solved numerically in the resonance case. The shallow water pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Expositiones Mathematicae
سال: 2018
ISSN: 0723-0869
DOI: 10.1016/j.exmath.2017.08.006